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1. Introduction

The Bureau of Meteorology routinely makes dynamical seasonal predictions out to

a 9 month lead time with the POAMA coupled ocean-atmosphere forecast system.

POAMA (Predictive Ocean Atmosphere Model for Australia; Alves et al. 2003) is an

intra-seasonal to inter-annual climate prediction system based on coupled ocean and

atmosphere general circulation models. The first version (POAMA-1) was developed

in a joint project involving the Bureau of Meteorology Research Centre (BMRC),

CSIRO Marine Research (CMR) and Land and Water Australia. POAMA-1 be-

came operational in October 2002. The main focus for POAMA is the prediction

of sea surface temperature (SST) anomalies associated with El Niño/La Niña, for

which POAMA-1’s predictions are internationally competitive. El Niño/Southern

Oscillation (ENSO) is the dominant driver of Australian climate variability, thus the

POAMA forecasts have great value for anticipating the behavior of El Niño. How-

ever, low model resolution and model bias and drift hinder the direct utilization of

regional climate prediction for Australia from POAMA-1.

The POAMA system is continually evolving and improving, and subsequent ver-

sions of POAMA will address the problematic bias and drift and will have improved

horizontal resolution so as to provide skilful prediction of regional climate variability.

Future development of the components of the POAMA system will be done as part of

the ACCESS (Australian Community Climate and Earth System Simulator) project.

ACCESS is a joint Bureau, CSIRO, and Australian Universities project that aims at

coordinated development of core components of earth system models and data as-

similation systems to support a range of applications, including POAMA’s seasonal

prediction.

In the meantime, bridging and calibrating techniques, which capitalize on those com-

ponents of the climate system for which POAMA-1 provides skilful prediction and

which have a tight connection to Australian climate (i.e., tropical sea surface tem-

perature variations associated with El Niño), can be explored. This report focuses

on statistical techniques to improve seasonal climate prediction in south eastern Aus-

tralia as part of the South Eastern Australian Climate Initiative (SEACI). Practices

at other national meteorological centres and research institutions are reviewed, and

recommendations are made for some exploratory trials.
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2. Current Status of POAMA-1

The POAMA system was designed to predict tropical coupled variability associated

with ENSO. This focus on ENSO is motivated by the knowledge that ENSO is the

dominant driver of the predictable interannual variations of Australian climate, es-

pecially in eastern Australia during winter-spring. For instance, Figure 1 shows

composite winter-spring rainfall anomalies across Australia for the 12 strongest El

Niño and La Niña events of the 20th century. Much of eastern Australia experiences

well below normal rainfall during El Niño and enhanced rainfall during La Niña. The

basis for seasonal climate prediction in Australia is the strong persistence of El Niño

or La Niña conditions from late winter into spring and summer. For example, Fig-

ure 2 shows the correlation of winter Niño3.4 SST index with the following spring

rainfall across Australia. Over much of eastern Australia 10-20% of the springtime

rainfall variance can be anticipated by the knowledge of the state of El Niño in winter.

Hence, accurate prediction of the state of ENSO should result in skilful predictions

of Australian rainfall one to two seasons in advance, especially in eastern Australia

during winter and spring.

There is also growing evidence that rainfall variability in eastern Australia is sen-

sitive not only to the occurrence of El Niño or La Niña but to the details of the

SST variations during each warm or cold event. Figure 3, from a recent study of

the sensitivity of Australian rainfall to inter-El Niño variations by Wang and Hen-

don (2006), shows that Australian-mean rainfall in spring is most sensitive to SST

variations near the dateline, which is well west of where the largest SST anomalies

during El Niño typically develop. Hence, stronger droughts are associated with El

Niño events whose SST anomalies are displaced westward of their typical location.

Australian rainfall is also sensitive to SST anomalies outside of the tropical eastern

Pacific. For instance, Victorian-mean rainfall in winter-spring is as sensitive to SST

anomalies in the eastern Indian Ocean/Coral Sea and the western Indian Ocean as it

is to SST anomalies in the equatorial eastern Pacific (Figure 4). Thus, a successful

seasonal prediction system must not only predict the occurrence of ENSO but also

the details of the SST anomalies both locally in the equatorial eastern Pacific and

remotely in the western Pacific and Indian Ocean.

In order to predict ENSO and its oceanic and atmospheric teleconnections, the fore-

cast model should be able to capture the full range of physical processes relevant to

atmosphere-ocean interactions associated with ENSO events. Furthermore, forecasts
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Figure 1: Winter-spring rainfall deciles for the twelve strongest La Niña (top)
and El Niño (bottom) events in the 20th century (La Niña years: 1910, 1916,
1917, 1938, 1950, 1955, 1956, 1971, 1973, 1975, 1988, 1998; El Niño years:
1905, 1914, 1940, 1941, 1946, 1965, 1972, 1977, 1982, 1991, 1994, 1997) (from
http://www.bom.gov.au/climate/enso/ensorain.comp.shtml).
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Figure 2: Correlation between June-July-August mean Niño3.4 SST index and
the following September-October-November (SON) mean rainfall for the period
1900-1998. Calculation and data were provided by the KNMI Climate Explorer
(from http://climexp.knmi.nl/start.cgi?someone@somewhere).

Figure 3: Correlation of SST with the negative of Australia-mean rainfall
anomaly for the spring season (SON) 1982-2002 (from Wang and Hendon 2006).
Blue shades indicate negative correlation and yellow/red shades indicate posi-
tive correlation. Shading level is 0.2.

5



Figure 4: Correlation of SST with Victorian-mean rainfall in winter and spring
for the period 1979-2002. Calculation and data were provided by the KNMI Cli-
mate Explorer (from http://climexp.knmi.nl/start.cgi?someone@somewhere).

need to be initialized with accurate atmospheric and upper ocean initial conditions in

the Tropics where the predictability of El Niño stems. The POAMA system is based

on comprehensive general circulation models of both the atmosphere and ocean, and

incorporates a real time ocean data assimilation system. Atmospheric initial con-

ditions are obtained in real time from the Bureau’s global weather forecast model

(GASP). The ocean data assimilation system provides the best estimate of the cur-

rent state of the tropical upper ocean. It makes use of all available surface and

subsurface temperature observations, including those from the TOGA-TAO moor-

ings, drifters, and ARGO floats. An updated analysis is generated every 3 days.

POAMA-1 is based on version 3 of the Bureau’s Atmospheric Model (BAM3; Col-

man et al. 2005) coupled to version 2 of the Australian Community Ocean Model

(ACOM2; Schiller et al. 2002, Oke et al. 2005). The atmospheric model is run

with modest horizontal resolution (∼ 300 km resolution) and with 17 vertical levels.

The ocean model is run with ∼ 200 km zonal resolution and telescoping meridional

resolution to 0.5◦ latitude in the Tropics (i.e. the meridional resolution gradually de-

creases towards the Tropics). At the time of the development of POAMA-1 (∼ 6 years

ago) these resolutions were considered state of the art for a coupled seasonal forecast

system based on general circulation models. At these resolutions, coupled behavior

associated with ENSO, including atmospheric intra-seasonal variability that strongly

6



interacts with ENSO, is well resolved, as are the associated global atmospheric and

oceanic teleconnections. However, the primary deficiencies of this modest atmospheric

resolution are the inability to resolve local climate variations associated with regional

topography and orography (e.g. the Dividing Range is not well represented) and the

fact that the extratropical storm tracks are too diffuse. The low zonal resolution of

the ocean model results in an overly diffusive equatorial thermocline, which has a

deleterious effect on the intensity of El Niño. Instability waves in the east Pacific and

the narrow upwelling regions along some coastal boundaries are also not adequately

resolved, but their effects in the climate system appear to be well represented by, for

instance, parameterized diffusion (Wang et al. 2005).

A serious problem with coupled seasonal forecast models such as POAMA-1 is that

the simulated climate drifts at long forecast lead times. This is demonstrated in Fig-

ure 5, which shows the bias of the climatology of SST from the POAMA-1 hindcasts

(one forecast per month for the period 1987-2001) as a function of forecast lead times.

Because the forecasts are initialized from observed ocean conditions, little bias is seen

at lead times of 1-2 months . However, by the lead time of 3 months, a tropical-wide

cold bias has developed, together with a warm bias off the coast of South America.

By the lead time of 6 months the bias is nearly saturated. Of particular concern

for ENSO prediction is the extension of the equatorial cold tongue into the western

Pacific, and the warming of the SST in the stratus-upwelling region off the South

American coast. A direct result of this bias is that the ENSO mode simulated by

POAMA-1 tends to be shifted west relative to the observed mode and tends to ex-

hibit an overly biennial tendency. Many of these issues are common to most climate

models and resolving these issues is a major challenge to the international climate

modeling community.

The atmospheric and oceanic teleconnections of ENSO into the Australian region

are also negatively impacted by this climate drift. Subsequent versions of POAMA

will strive to reduce the model systematic error, through improvements to the com-

ponent models under the ACCESS project. Presently the model bias resulting from

the mean SST is removed from the POAMA-1 forecasts by forming model anomalies

without the lead-time dependent model climatology. However, more sophisticated

methods are required to compensate for the deleterious impact of this bias on the

teleconnection of ENSO into the Australian region, especially the rainfall teleconnec-

tion in south eastern Australia. We will review some techniques to compensate for

systematic bias in Section 3.
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Despite the significant bias of the mean state of the tropical climate in the POAMA-1

forecasts, especially at longer lead times, POAMA-1 exhibits useful skill for predic-

tion of El Niño/La Niña with lead times of up to 9 months. This skill is indicated in

Figure 6, which displays the anomaly correlation of the predicted Niño3 SST index as

a function of forecast lead time in the period of 1987-2002. POAMA-1 readily beats

persistence and demonstrates skill (correlation greater than 0.6) at lead times of 8-9

months. Such skill is typical of other dynamical and statistical forecast models run

internationally. However, the direct prediction of rainfall from POAMA-1 appears to

be of limited utility. The correlation of rainfall directly predicted from POAMA-1

with observed rainfall is shown in Figure 7. Only in western Australia is there any

hint of skill. The lack of forecast skill for south eastern Australia is emphasized by

Figure 5: SST bias (POAMA SST - observed SST) from the POAMA-1 hind-
casts as a function of forecast lead time (months) over the period of 1987-2001.
Units are ◦ C.
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comparing mean rainfall over south eastern Australia with the POAMA-1 predictions

(Figure 8). At the lead time of 2 months south eastern Australian rainfall predicted

from POAMA-1 has a weak but statistically significant correlation with the observed

counterpart (r ∼ 0.16), but POAMA-1’s forecast with a 8 month lead time does not

have any skill (r ∼ 0.04). Nevertheless, skilful seasonal prediction of Australian rain-

fall (and regional climate) should be feasible with the current POAMA system because

of its ability to predict El Niño/La Niña. Therefore, we will review commonly used

statistical adjustment techniques to bridge/calibrate the predictable components of

the climate system to regional climate, and we will recommend techniques that should

be explored for application to the prediction of south eastern Australian rainfall.

3. Review of Bridging/Calibrating Techniques

Statistical post-processing of model forecasts can remove mean model bias, improve

spatial patterns of predictable variability (calibrate/downscale), or exploit directly

predictable components of the climate for prediction of associated variability (bridge).

The basic approach of all statistical post-processing techniques is to develop rela-

tionships between forecasts and verification in a training period, and then to apply

the statistical relationship to adjust/extend model forecasts for independent periods.

Statistical post-processing suffers the same problems that pure statistical forecast-

Figure 6: Anomaly correlation of observed Niño3 SST index with predicted
index from the POAMA-1 hindcasts as a function of forecast lead time (green
curve) in 1987-2002. For reference, correlation of persistence of observed index
with itself (e.g. use this month’s value of the index as a prediction for next
month) is shown in red.
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Figure 7: Correlation of observed monthly rainfall anomaly with monthly
rainfall anomaly from the POAMA-1 hindcasts at the lead time of 2 months
(top) and 8 months (bottom) for the period 1987-2002. The monthly rainfall
anomaly is normalised by monthly mean standard deviation of rainfall.
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Figure 8: Time series of the normalised monthly rainfall anomalies over south
eastern Australia from observation and the POAMA-1 hindcasts at the lead
time of 2 months (top) and 8 months (bottom) over the period 1987-2002.
Ordinate has no unit.
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ing techniques do: relationships in the dependent period do not necessarily apply

in independent periods, and there is the possibility of artificial skill. Also, statisti-

cal techniques are generally linear, and can not readily take into account nonlinear

interactions from initial conditions and boundary forcing. Furthermore, statistical

post-processing can not generate skill: the dynamical model must have skill in pre-

dicting some aspects of the climate. However, many of the observed drivers of climate

variability are generally linear, and artificial skill can usually be assessed/avoided by

judicious use of cross-validation. Nevertheless, the ultimate goal of dynamical sea-

sonal prediction, which naturally accounts for nonlinearities and sensitivities to the

full range of initial conditions, is to improve the dynamical forecasting system so

that regional predictions can be directly used. Statistical post-processing should be

viewed as an intermediate patch.

POAMA-1’s ability to predict tropical Indo-Pacific SSTs with up to a 9 month lead

time implies potential improvement for prediction of regional Australian climate vari-

ations associated with ENSO through statistical post-processing. We review here

some possible methods to exploit this predictability of ENSO for Australian regional

seasonal climate prediction.

a. Bridging

Bridging methods reported in the literature (e.g., Voldoire et al. 2002) are based on

observed statistical relationships between a set of predictors (e.g., SST time series)

and a set of target predictands (e.g., observed rainfall). The observed statistical rela-

tionship between predictor and predictand is generally a (multiple) linear regression

relationship. There are a number of options for choosing the predictors/predictands

and the associated spatial patterns. In general, the predictors must be fields for

which the model has predictability. Predictands should be the fields of interest but

only those that have a statistical relationship with the predictors (e.g., rainfall with

SST as a predictor). The most common approaches to identifying a statistical re-

lationship and the resultant spatial patterns of the predictors and predictands are

to use singular value decomposition analysis (SVDA), canonical correlation analysis

(CCA), or principal component analysis (PCA). These techniques expand predictors

and predictands in terms of dominant patterns of variability and the time series of

those patterns. For instance, the time series of a predictor field xi (here the subscript

i indicates time, and bold face indicates a spatial vector) from a training period are

expanded in terms of spatial patterns (gm, where m is the number of patterns) and
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the time series (or principal components, um,i) of each pattern,

xi ≈

M∑

m=1

um,i gm (1)

Likewise, the predictand time series yi are expressed as

yi ≈

M∑

m=1

vm,i hm (2)

SVDA finds the spatial patterns (gm, hm) which maximize the temporal covariance

between predictor and predictand (Bretherton et al. 1992, Ward and Navarra 1997).

CCA looks for the spatial patterns of predictors and predictands that have maxi-

mum correlation (Barnett and Preisendorfer 1987, Bretherton et al. 1992). PCA is

applied to the predictors (and sometimes also to the predictands) in order to identify

the dominant patterns of variability in each field that account for the most variance

(Bretherton et al. 1992, Barnett et al. 1993, Mo and Straus 2002). In this last case,

the relationship between the dominant modes of predictors and predictands can be

found by multiple linear regression.

According to Bretherton et al. (1992), SVDA and CCA have the advantage of provid-

ing a direct measure of association between a predictor and a predictand. However,

a disadvantage of these two methods is the possibility that the covariances or corre-

lations might artificially show a high fit to random noise (Ward and Navarra 1997).

The leading modes of PCA are more reproducible in independent data (Feddersen et

al. 1999). Also, as some model errors are due to noise, initial application of PCA can

decrease such types of errors. However, Bretherton et al. (1992) reported that anal-

ysis based on principal components could display an undesirable mean bias towards

the leading spatial patterns (which explain the most variance in one field but are not

necessarily most related to another field). Despite the pros and cons of each method,

Bretherton et al. (1992) and Feddersen et al. (1999) suggested that results from the

three methods were similar when higher order modes of predictors and predictands

were included.

Once predictors and predictands are determined and their association is found by

any of these techniques, an estimate of the predictand at time i (ŷi) is obtained by
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multiple linear regression of yi on the time series um,i in (1), i.e.

ŷi ≈

Ms∑

m=1

Am um,i (3)

where Ms is the retained number of patterns, and Am is a set of regression coefficients

minimizing the expected root-mean-sqaure (rms) difference between ŷi and yi from

the training period. So, for instance, the um,i might be the principal component

time series based on PCA of observed SST or of the predicted SST. The regression

relation (3) then relates observed variations of the predictand (e.g., Australian rainfall

at gridpoints) to these principal component time series. If (3) was developed using

the principal components of observed SST and observed rainfall in a training period,

then forecasts at time l, which is independent from the training period, are made

by projecting predicted SST fields x̂l from POAMA-1 onto the respective spatial

patterns from PCA of observed SST i.e.,

ûm,l = x̂l gm (4)

The resulting principal components ûm,l are then substituted in the observed regres-

sion relation (3) to make the rainfall prediction (ŷl). If (3) was developed using

principal components of predicted SST and observed rainfall, then the predicted SST

fields are projected onto the spatial patterns from PCA of predicted SST and the

resultant principal components (ûm,l) are plugged into (3) which has been developed

between model SST and observed rainfall. Voldoire et al. (2002), using a similar

bridging technique as described above (instead of principal component time series of

the predictors, they used the Nino4 SST index), reported positive results for predic-

tion of rainfall from an earlier version of the BMRC coupled forecast model. They

showed that the model had no skill in directly predicting rainfall, but, via bridging,

had comparable skill to the operational statistical scheme employed by the National

Climate Center which uses the first two rotated principal components of observed

SST anomaly as predictors (Drosdowsky and Chambers 2001).

b. Calibration

Calibration refers to the adjustment of spatial patterns of variability that are pre-

dicted from the forecast model against a reference data set (e.g. observational data).

As in bridging, the relationship between the predicted patterns of variability and ob-

served behavior is developed in a training period, and then this relationship is applied
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to forecasts from an independent period. There are various options for calibration

techniques, and SVDA, CCA and PCA are also useful tools for calibration as well as

for bridging. In particular, because PCA concentrates data containing a large number

of variables into a small number of new variables, PCA is widely used for filtering

of noise in a data set (Barnett and Preisendorfer 1987, Tippett et al. 2003). PCA

also produces time series and spatial patterns that are uncorrelated from one another

(Wilks 1995). Hence PCA lends itself nicely to the development of calibration based

on correlation between predictors and predictands. Therefore, we assume here that

a predictor (e.g. POAMA rainfall) and a predictand (e.g. observed rainfall) are ex-

panded with PCA. Each time series of a predictor field xi and a predictand field yi

from the training period is expanded in terms of spatial patterns (gm and hm) and

their time series (um,i and vm,i)

xi ≈

M∑

m=1

um,i gm (5)

yi ≈

M∑

m=1

vm,i hm (6)

Then the predictand principal components are estimated by multiple regression onto

the um,i time series, i.e.

v̂m,i ≈

Ms∑

m=1

Cm um,i (7)

where Cm are the multiple linear regression coefficients. If the predictand time series

are not expanded with spatial and temporal coefficients, then an estimate of the

predictand is directly obtained by multiple linear regression on the um,i time series,

i.e.

ŷi ≈

Ms∑

m=1

Bm um,i (8)

Forecasts at time l are then either made (i) by using the predictor principal com-

ponents um,l in (7) to obtain the calibrated principal components of the predictand

(v̂m,l), with which the predictand field (ŷl) is reconstructed in (6), or (ii) by using

um,l in (8) to directly obtain the best estimate of the predictand field ŷl.

A common problem associated at longer lead times with statistical calibration us-

ing a linear regression is the tendency to lose variance. This can be easily fixed by

multiplying the calibrated value by the ratio between the standard deviations of the

observed and the adjusted values with some weighting factors - i.e. “inflation” (Kang
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et al. 2004, Doblas-Reyes et al. 2005).

With both bridging and calibration, if the data period is relatively short, cross-

validation is required to estimate true skill. For example, to produce a forecast for

time t, the data at t are removed from a complete data set, and the remaining data

are used to construct a statistical model. Then, a forecast is made with this model

for the data at t and verified against observation (von Storch and Navarra 1999).

c. Applications of bridging/calibrating techniques

Using statistical bridging and calibrating methods, a number of studies have reported

significant forecast skill improvements. Feddersen et al. (1999) performed a single

model experiment to test the prediction skill of winter precipitation in northeast

Brazil and North America. Model forecasts were made with three different initial

atmospheric conditions, but all were forced by identical observed SST for 34 years

(1961-1994). Feddersen et al. found that, compared to the direct model output, the

SVDA based adjustment improved prediction of the locations of the dominant rain-

fall anomalies over Brazil and reduced the amplitude error over northeast Brazil and

North America.

Kang et al. (2004) investigated potential predictability of summer mean precipitation,

using the KMA-SNU seasonal prediction system comprised of 10 ensemble integra-

tions for 21 years (1979-1999). After correction with SVDA, the summer rainfall

predictability was significantly enhanced over most of the domain (20◦-50◦N).

The above two studies utilized ensembles initialized with different initial conditions

from a single model. Feddersen and Andersen (2005) and Lin and Derome (2005) used

multi-model ensembles which can smooth the errors from individual model deficien-

cies. A good example of multi-model ensemble forecast is the one from DEMETER

project (Development of a European Multi-model Ensemble system for seasonal to

inTERannual prediction, Hagedorn et al. (2005)).

Feddersen and Andersen (2005) used 40 year hindcast data (1961-2000) from the

DEMETER multi-model ensemble to improve forecasts of precipitation and 2-m tem-

perature over Scandinavia, Europe, Northwest America, the U.S. and Australia. They

downscaled the rainfall and temperature predicted by the DEMETER system from

the model grids to regional station observations and from seasonal to daily resolu-
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tion in order to make the information from the seasonal climate prediction available

for crop yield models. They showed the downscaling based on SVDA improved the

October-November-December rainfall prediction over Australia in terms of the mean

anomaly correlation with observations. Also, the 40 year mean probability distribu-

tion of temporally downscaled rainfall exhibited a more consistent pattern with the

observed counterpart than the probability distribution of the rainfall directly fore-

casted from the model ensemble.

Lin and Derome (2005) formed a multi-model ensemble to examine the forecast

skill of the Pacific North America pattern (PNA) and the North Atlantic Oscillation

(NAO) in 1969-1999. SVDA was conducted to bridge the ensemble mean Northern

Hemisphere (NH) 500 geopotential height (Z500) in January and February and the

observed tropical Pacific SST in the previous November. The resultant time series of

the first 3 leading modes of the model Z500 were then regressed onto the time series

of observed Z500, resulting in a calibrated prediction of Z500. The correlation scores

between the adjusted and the observed PNA and NAO increased from 0.51 and 0.26

to 0.59 and 0.57, respectively.

In comparison, Tippett et al. (2003), Tippett et al. (2005) and Doblas-Reyes et

al. (2005) attempted to bridge and calibrate their dynamical model output based

on CCA. Tippett et al. (2003) sought to improve the rainfall prediction skill over

the central south western Asia (CSW Asia), comparing three different predictors -

CSW Asian precipitation, 200 hPa level wind over eastern Asia, and the tropical

west Pacific precipitation - as simulated in a 24 member ensemble using the ECHAM

4.5 atmospheric GCM. With the tropical western Pacific rainfall as a predictor vari-

able, the bridged and calibrated CSW Asian rainfall with CCA had a significantly

improved mean anomaly correlation of 0.54 with the observed rainfall, compared to

the direct rainfall prediction from the model having a correlation of 0.1.

Tippett et al. (2005) extended the work of Tippett et al. (2003) by using a multi-

model ensemble with four additional models. They demonstrated that each of the five

atmospheric GCMs obtained better scores in its rainfall prediction after the statisti-

cal correction using CCA based on the tropical western Pacific rainfall and the CSW

Asian rainfall. The statistical adjustment enhanced the probability for below-normal

rainfall for the four drought years of 1999-2002 and for above-normal rainfall over the

northern part of the region in 2002. Another interesting result worth noting is that

the differences in predictions from the single model ensemble and the multi-model
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ensemble predictions significantly decreased after each model went through the sta-

tistical calibration.

Doblas-Reyes et al. (2005) used the DEMETER multi-model ensemble with the ap-

plication of CCA for the prediction of mean sea level pressure, precipitation and

2-m temperature over the tropical band (20◦S- 20◦N), Pacific/North America and

North Atlantic-Europe in December-January-February. Their results showed that

the statistical calibration could improve the accuracy of probabilistic prediction from

each single model ensemble and the multi-model ensemble. Geographically, the skill

enhancement was more obvious over the Tropics than for two other extratropical re-

gions. According to their comparison of the prediction skill from the single model

and the multi-model ensembles, the statistical adjustment reduced the differences in

prediction skills between the single model and the multi-model ensembles, which is

consistent with the finding of Tippett et al. (2005).

Barnett et al. (1993) and Chen et al. (2000) used a similar approach with PCA

to correct their model systematic bias (rather than forecast error) by identifying the

dominant patterns of systemtic error associated with observed variations of SST.

Then this error was removed from the model based on the temporal behavior of the

SST. In the study of Barnett et al. (1993) who used a dynamical ocean model coupled

with a statistical atmospheric model, the error in their model’s SST was predicted

by the principal components of the model SST and sea level, and then the predicted

error was subtracted from the model SST. The error-corrected model SST showed a

higher correlation with the observed SST over the tropical Pacific Ocean.

Chen et al. (2000), using similar techniques, also obtained improved prediction skill

for model SST and wind stress over the tropical Pacific Ocean. Their corrected model

simulated more consistent wind and SST patterns, for instance, as occurred in the

1982-83 El Niño. It also produced a better forecast for the 1997-98 El Niño.

Finally, Mo and Straus (2002) presented a comprehensive study with respect to the

application of PCA with multiple linear regression. They calibrated prediction of NH

winter Z500 by regressing the leading principal components of the observed Z500 onto

those of the model Z500 simulated in a GCM with 9 different initial conditions. The

results indicated that the statistical correction could enhance prediction skill for Z500

in the NH winter. Also, mean square error of the forecast was significantly reduced

through the adjustment when skilful predictors were chosen out of the principal com-
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ponents of the model Z500. In addition, they applied the same calibration technique

to five other GCMs and confirmed that the statistical correction could decrease the

forecasting error for the NH Z500.

In summary, the literature suggests that statistical bridging and calibration are

promising ways to improve skills of seasonal prediction of regional climate, given

the present limitations of a dynamical model. However, it should be borne in mind

that the improvement over one region can be made at the expense of the skill over

other regions (Mo and Straus 2002), and the degree of improvement can be different

according to the region, season, and variable (Doblas-Reyes et al. 2005). Importantly,

skill improvement in prediction of regional climate is only possible if the model can

predict some relevant components of climate variability. For example, if the model

has no skill in predicting SST variations associated with El Niño, no amount of sta-

tistical correction will be able to recover regional rainfall variability associated with

El Niño.

4. Recommendations for application to seasonal

prediction in south eastern Australia

In conclusion, previous work has reported significant improvement in regional cli-

mate prediction with bridging and calibration techniques. In regard to south eastern

Australian climate prediction, explorative work to bridge and calibrate predictions

from the POAMA-1 hindcasts appears to be worthwhile because there is a signifi-

cant statistical relationship between south eastern Australian rainfall variability and

the tropical Indo-Pacific SST variability for which POAMA-1 provides skilful pre-

diction (Nicholls 1989, Drosdowsky and Chambers 2001, Wang and Hendon 2006).

Therefore, recommended techniques to be investigated are: (i) bridging of POAMA-

1’s predictions of the leading modes of tropical SST variability to regional rainfall

with CCA, SVDA or PCA and (ii) calibration of POAMA’s predictions of rainfall

using CCA, SVDA, or PCA together with linear regression onto the observed rainfall.

A major limitation of the POAMA-1 hindcasts is the short record and lack of a multi-

member ensemble, which makes detection/calibration/bridging of the predictable sig-

nals difficult. Currently there is only one forecast made per month for the period

1987-2001. We strongly recommend that an extended hindcasts set be generated by

a multi-member ensemble system. Work is now underway to produce an ensemble of
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hindcasts (∼ 8-12 forecasts per month) and to extend the hindcast period 1980-2005.

The generation of the ensemble hindcasts should be given the highest priority because

the true benefit of calibration and bridging can not be realized with a single member

ensemble.
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